New numerical methods for solving the time-dependent Maxwell equations
نویسندگان
چکیده
We review some recent developments in numerical algorithms to solve the time-dependent Maxwell equations for systems with spatially varying permittivity and permeability. We show that the Suzuki product-formula approach can be used to construct a family of unconditionally stable algorithms, the conventional Yee algorithm, and two new variants of the Yee algorithm that do not require the use of the staggered-in-time grid. We also consider a one-step algorithm, based on the Chebyshev polynomial expansion, and compare the computational efficiency of the one-step, the Yee-type and the unconditionally stable algorithms. For applications where the longtime behavior is of main interest, we find that the one-step algorithm may be orders of magnitude more efficient than present multiple time-step, finite-difference time-domain algorithms.
منابع مشابه
ON MAXWELL'S STRESS FUNCTIONS FOR SOLVING THREE DIMENSIONAL ELASTICITY PROBLEMS IN THE THEORY OF ELASTICITY
The governing equations of three dimensional elasticity problems include the six Beltrami-Michell stress compatibility equations, the three differential equations of equilibrium, and the six material constitutive relations; and these are usually solved subject to the boundary conditions. The system of fifteen differential equations is usually difficult to solve, and simplified methods are usual...
متن کاملThe smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system
A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...
متن کاملNumerical solution of time-dependent foam drainage equation (FDE)
Reduced Differental Transform Method (RDTM), which is one of the useful and effective numerical method, is applied to solve nonlinear time-dependent Foam Drainage Equation (FDE) with different initial conditions. We compare our method with the famous Adomian Decomposition and Laplace Decomposition Methods. The obtained results demonstrated that RDTM is a powerful tool for solving nonlinear part...
متن کاملA Local Strong form Meshless Method for Solving 2D time-Dependent Schrödinger Equations
This paper deals with the numerical solutions of the 2D time dependent Schr¨odinger equations by using a local strong form meshless method. The time variable is discretized by a finite difference scheme. Then, in the resultant elliptic type PDEs, special variable is discretized with a local radial basis function (RBF) methods for which the PDE operator is also imposed in the local matrices. Des...
متن کاملFinite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients
We investigate the finite element methods for solving time-dependent Maxwell equations with discontinuous coefficients in general three-dimensional Lipschitz polyhedral domains. Both matching and nonmatching finite element meshes on the interfaces are considered, and optimal error estimates for both cases are obtained. The analysis of the latter case is based on an abstract framework for nested...
متن کاملThe new implicit finite difference method for the solution of time fractional advection-dispersion equation
In this paper, a numerical solution of time fractional advection-dispersion equations are presented.The new implicit nite dierence methods for solving these equations are studied. We examinepractical numerical methods to solve a class of initial-boundary value fractional partial dierentialequations with variable coecients on a nite domain. Stability, consistency, and (therefore) convergenceof t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002